
Oracle9i: Program with PL/SQL

Additional Practices

40054GC11
Production 1.1
October 2001
D34006

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure
and is also protected by copyright law. Reverse engineering of the software is
prohibited. If this documentation is delivered to a U.S. Government Agency of the
Department of Defense, then it is delivered with Restricted Rights and the following
legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered
trademarks of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Authors

Nagavalli Pataballa
Priya Nathan

Technical Contributors
and Reviewers

Anna Atkinson
Bryan Roberts
Caroline Pereda
Cesljas Zarco
Coley William
Daniel Gabel
Dr. Christoph Burandt
Hakan Lindfors
Helen Robertson
John Hoff
Lachlan Williams
Laszlo Czinkoczki
Laura Pezzini
Linda Boldt
Marco Verbeek
Natarajan Senthil
Priya Vennapusa
Roger Abuzalaf
Ruediger Steffan
Sarah Jones
Stefan Lindblad
Susan Dee

Publisher

Sheryl Domingue

Additional
Practices

Oracle9i : Program with PL/SQL - Additional Practices - 3

Additional Practices Overview

These additional practices are provided as a supplement to the course Oracle9i: Program with PL/SQL.
In these practices, you apply the concepts that you learned in Oracle9i: Program with PL/SQL.

The additional practices comprise of two parts:

Part A provides supplemental practice declaring variables, writing executable statements, interacting
with the Oracle server, writing control structures, and working with composite data types, cursors and
handle exceptions. In part A, you also create stored procedures, functions, packages, and triggers, and
to use the Oracle-supplied packages with iSQL*Plus as the development environment. The tables used
in this portion of the additional practices include EMPLOYEES, JOBS, JOB_HISTORY, and
DEPARTMENTS.

Part B is a case study which can be completed at the end of the course. This part supplements the
practices for creating and managing program units. The tables used in the case study are based on a
video database and contain the TITLE, TITLE_COPY, RENTAL, RESERVATION, and MEMBER
tables.

An entity relationship diagram is provided at the start of part A and part B. Each entity relationship
diagram displays the table entities and their relationships. More detailed definitions of the tables and
the data contained in each of the tables is provided in the appendix Additional Practices: Table
Descriptions and Data.

Oracle9i : Program with PL/SQL - Additional Practices - 4

Part A: Entity Relationship Diagram

Human Resources

Oracle9i : Program with PL/SQL - Additional Practices - 5

Part A

Note: These exercises can be used for extra practice when discussing how to declare variables and
write executable statements.

1. Evaluate each of the following declarations. Determine which of them are not legal and explain
why.

a. DECLARE

v_name,v_dept VARCHAR2(14);

b. DECLARE

v_test NUMBER(5);

c. DECLARE

V_MAXSALARY NUMBER(7,2) = 5000;

d. DECLARE

V_JOINDATE BOOLEAN := SYSDATE;

2. In each of the following assignments, determine the data type of the resulting expression.

a. v_email := v_firstname || to_char(v_empno);

b. v_confirm := to_date('20-JAN-1999', 'DD-MON-YYYY');

c. v_sal := (1000*12) + 500

d. v_test := FALSE;

e. v_temp := v_temp1 < (v_temp2/ 3);

f. v_var := sysdate;

Oracle9i : Program with PL/SQL - Additional Practices - 6

Part A
3. DECLARE

v_custid NUMBER(4) := 1600;

v_custname VARCHAR2(300) := 'Women Sports Club';

v_new_custid NUMBER(3) := 500;

BEGIN

DECLARE

v_custid NUMBER(4) := 0;

v_custname VARCHAR2(300) := 'Shape up Sports Club';

v_new_custid NUMBER(3) := 300;

v_new_custname VARCHAR2(300) := 'Jansports Club';

BEGIN

v_custid := v_new_custid;

v_custname := v_custname || ' ' || v_new_custname;

END;

v_custid := (v_custid *12) / 10;

END;
/

Evaluate the PL/SQL block above and determine the data type and value of each of the following variables
according to the rules of scoping:

a. The value of V_CUSTID at position 1 is:

b. The value of V_CUSTNAME at position 1 is:

c. The value of V_NEW_CUSTID at position 2 is:

d. The value of V_NEW_CUSTNAME at position 1 is:

e. The value of V_CUSTID at position 2 is:

f. The value of V_CUSTNAME at position 2 is:

Note: These exercises can be used for extra practice when discussing how to interact with the Oracle
server and write control structures.

4. Write a PL/SQL block to accept a year and check whether it is a leap year. For example, if the year
entered is 1990, the output should be “1990 is not a leap year.”

Hint: The year should be exactly divisible by 4 but not divisible by 100, or it should be divisible
by 400.

1

2

Oracle9i : Program with PL/SQL - Additional Practices - 7

Part A

Test your solution with the following years:

5. a. For the exercises below, you will require a temporary table to store the results. You can either create
the table yourself or run the labAp_05.sql script that will create the table for you. Create a table
named TEMP with the following three columns:

b. Write a PL/SQL block that contains two variables, MESSAGE and DATE_WRITTEN.
Declare MESSAGE as VARCHAR2 data type with a length of 35 and DATE_WRITTEN as
DATE data type. Assign the following values to the variables:

Variable Contents

MESSAGE ‘This is my first PL/SQL program’
DATE_WRITTEN Current date

Store the values in appropriate columns of the TEMP table. Verify your results by querying the
TEMP table.

Column Name NUM_STORE CHAR_STORE DATE_STORE

Key Type

Nulls/Unique

FK Table

FK Column

Datatype Number VARCHAR2 Date

Length 7,2 35

1990 Not a leap year
2000 Leap year

1996 Leap year

1886 Not a leap year
1992 Leap year

1824 Leap year

Oracle9i : Program with PL/SQL - Additional Practices - 8

Part A

6. a. Store a department number in a iSQL*Plus substitution variable

b. Write a PL/SQL block to print the number of people working in that department.

Hint: Enable DBMS_OUTPUT in iSQL*Plus with SET SERVEROUTPUT ON.

7. Write a PL/SQL block to declare a variable called v_salary to store the salary of an employee. In
the executable part of the program, do the following:

a. Store an employee name in a iSQL*Plus substitution variable

b. Store his or her salary in the variable v_salary

c. If the salary is less than 3,000, give the employee a raise of 500 and display the message
'<Employee Name>’s salary updated' in the window.

d. If the salary is more than 3,000, print the employee’s salary in the format, '<Employee Name>
earns …...………'

e. Test the PL/SQL for the following last names:

Note: Undefine the variable that stores the employee’s name at the end of the script.

8. a. Store the salary of an employee in a iSQL*Plus substitution variable.

b. Write a PL/SQL block to use the above defined salary and perform the following:

• Calculate the annual salary as salary * 12.

• Calculate the bonus as indicated below:

• Display the amount of the bonus in the window in the following format:

‘The bonus is $………………..’

Annual Salary Bonus

>= 20,000 2,000

19,999 - 10,000 1,000

<= 9,999 500

LAST_NAME SALARY

Pataballa 4800

Greenberg 12000

Ernst 6000

Philtanker 2200

Oracle9i : Program with PL/SQL - Additional Practices - 9

Part A

• Test the PL/SQL for the following test cases:

Note: These exercises can be used for extra practice when discussing how to work with composite
data types, cursors and handling exceptions.

9. a. Write a PL/SQL block to store an employee number, the new department number, and the percentage
increase in the salary in iSQL*Plus substitution variables.

b. Update the department ID of the employee with the new department number, and update the salary
with the new salary. Use the EMP table for the updates. Once the update is complete, display the
message, 'Update complete' in the window. If no matching records are found, display ‘No Data
Found’. Test the PL/SQL for the following test cases:

SALARY BONUS

5000 2000

1000 1000

15000 2000

EMPLOYEE_ID NEW_DEPARTMEN
T_ID

% INCREASE MESSAGE

100 20 2 Updation
Complete

10 30 5 No Data
found

126 40 3 Updation
Complete

Oracle9i : Program with PL/SQL - Additional Practices - 10

Part A
10. Create a PL/SQL block to declare a cursor EMP_CUR to select the employee name, salary, and hire

date from the EMPLOYEES table. Process each row from the cursor, and if the salary is greater than
15,000 and the hire date is greater than 01-FEB-1988, display the employee name, salary, and hire date
in the window in the format shown in the sample output below:

11. Create a PL/SQL block to retrieve the last name and department ID of each employee from the
EMPLOYEES table for those employees whose EMPLOYEE_ID is less than 114. From the values
retrieved from the EMPLOYEES table, populate two PL/SQL tables, one to store the records of the
employee last names and the other to store the records of their department IDs. Using a loop, retrieve
the employee name information and the salary information from the PL/SQL tables and display it in
the window, using DBMS_OUTPUT.PUT_LINE. Display these details for the first 15 employees in
the PL/SQL tables.

Oracle9i : Program with PL/SQL - Additional Practices - 11

Part A
12. a. Create a PL/SQL block that declares a cursor called DATE_CUR. Pass a parameter of DATE data

type to the cursor and print the details of all employees who have joined after that date.

DEFINE P_HIREDATE = 08-MAR-00

b. Test the PL/SQL block for the following hire dates: 08-MAR-00, 25-JUN-97, 28-SEP-98,
07-FEB-99.

13. Create a PL/SQL block to promote clerks who earn more than 3,000 to the job title SR CLERK and
increase their salary by 10%. Use the EMP table for this practice. Verify the results by querying on
the EMP table. Hint: Use a cursor with FOR UPDATE and CURRENT OF syntax.

14. a. For the exercise below, you will require a table to store the results. You can create the ANALYSIS
table yourself or run the labAp_14a.sql script that creates the table for you. Create a table called
ANALYSIS with the following three columns:

b. Create a PL/SQL block to populate the ANALYSIS table with the information from the
EMPLOYEES table. Use an iSQL*Plus substitution variable to store an employee’s last name.

c. Query the EMPLOYEES table to find if the number of years that the employee has been with the
organization is greater than five, and if the salary is less than 3,500, raise an exception. Handle the
exception with an appropriate exception handler that inserts the following values into the
ANALYSIS table: employee last name, number of years of service, and the current salary. Otherwise
display Not due for a raise in the window. Verify the results by querying the ANALYSIS
table. Use the following test cases to test the PL/SQL block:

Column Name ENAME YEARS SAL

Key Type

Nulls/Unique

FK Table

FK Column

Datatype VARCHAR2 Number Number

Length 20 2 8,2

LAST_NAME MESSAGE

Austin Not due for a raise

Nayer Not due for a raise

Fripp Not due for a raise

Khoo Due for a raise

Oracle9i : Program with PL/SQL - Additional Practices - 12

Part A

Note: These exercises can be used for extra practice when discussing how to create procedures.

15. In this practice, create a program to add a new job into the JOBS table.

a. Create a stored procedure called ADD_JOBS to enter a new order into the JOBS table.

The procedure should accept three parameters. The first and second parameters supplies a job ID
and a job title. The third parameter supplies the minimum salary. Use the maximum salary for the
new job as twice the minimum salary supplied for the job ID.

b. Disable the trigger SECURE_EMPLOYEES before invoking the procedure. Invoke the procedure
to add a new job with job ID SY_ANAL, job title System Analyst, and minimum salary of
6,000.

c. Verify that a row was added and remember the new job ID for use in the next exercise.

Commit the changes.

16. In this practice, create a program to add a new row to the JOB_HISTORY table for an existing
employee.

Note: Disable all triggers on the EMPLOYEES, JOBS, and JOB_HISTORY tables before invoking
the procedure in part b. Enable all these triggers after executing the procedure.

a. Create a stored procedure called ADD_JOB_HIST to enter a new row into the JOB_HISTORY
table for an employee who is changing his job to the new job ID that you created in question 15b.

Use the employee ID of the employee who is changing the job and the new job ID for the
employee as parameters. Obtain the row corresponding to this employee ID from the
EMPLOYEES table and insert it into the JOB_HISTORY table. Make hire date of this employee
as the start date and today's date as end date for this row in the JOB_HISTORY table.

Change the hire date of this employee in the EMPLOYEES table to today's date. Update the job
ID of this employee to the job ID passed as parameter (Use the job ID of the job created in
question 15b) and salary equal to minimum salary for that job ID + 500.

Include exception handling to handle an attempt to insert a nonexistent employee.

b. Disable triggers (Refer to the note at the beginning of this question.)

Execute the procedure with employee ID 106 and job ID SY_ANAL as parameters.

Enable the triggers that you disabled.

c. Query the tables to view your changes, and then commit the changes.

Oracle9i : Program with PL/SQL - Additional Practices - 13

Part A
17. In this practice, create a program to update the minimum and maximum salaries for a job in the JOBS

table.

a. Create a stored procedure called UPD_SAL to update the minimum and maximum salaries for a
specific job ID in the JOBS table.

Pass three parameters to the procedure: the job ID, a new minimum salary, and a new maximum salary
for the job. Add exception handling to account for an invalid job ID in the JOBS table. Also, raise an
exception if the maximum salary supplied is less than the minimum salary. Provide an appropriate
message that will be displayed if the row in the JOBS table is locked and cannot be changed.

b. Execute the procedure. You can use the following data to test your procedure:

Note: Disable triggers SALARY_CHECK and AUDIT_EMP_VALUES, if you get an error while
executing the second EXECUTE statement.

EXECUTE upd_sal ('SY_ANAL',7000,140) (This statement should raise exception)

EXECUTE upd_sal ('SY_ANAL',7000,14000) (This statement should be successful)

c. Query the JOBS table to view your changes, and then commit the changes.

Oracle9i : Program with PL/SQL - Additional Practices - 14

Part A

18. In this practice, create a procedure to monitor whether employees have exceeded their
average salary limits.

a. Add a column to the EMPLOYEES table by executing the following command:
(labaddA_18.sql)

ALTER TABLE employees

ADD (sal_limit_indicate VARCHAR2(3) DEFAULT 'NO'

CONSTRAINT emp_sallimit_ck CHECK

(sal_limit_indicate IN ('YES', 'NO')));

b. Write a stored procedure called CHECK_AVG_SAL. This checks each employee's average
salary limit from the JOBS table against the salary that this employee has in the EMPLOYEES
table and updates the SAL_LIMIT_INDICATE column in the EMPLOYEES table when this
employee has exceeded his or her average salary limit.

Create a cursor to hold employee IDs, salaries, and their average salary limit. Find the average
salary limit possible for an employee's job from the JOBS table. Compare the average salary
limit possible for each employee to exact salaries and if the salary is more than the average salary
limit, set the employee’s SAL_LIMIT_INDICATE column to YES; otherwise, set it to NO.
Add exception handling to account for a record being locked.

c. Execute the procedure, and then test the results.

Query the EMPLOYEES table to view your modifications, and then commit the changes.

Oracle9i : Program with PL/SQL - Additional Practices - 15

Part A

Note: These exercises can be used for extra practice when discussing how to create functions.

19. Create a program to retrieve the number of years of service for a specific employee.

a. Create a stored function called GET_SERVICE_YRS to retrieve the total number of years
of service for a specific employee.

The function should accept the employee ID as a parameter and return the number of years
of service. Add error handling to account for an invalid employee ID.

b. Invoke the function. You can use the following data:

EXECUTE DBMS_OUTPUT.PUT_LINE(get_service_yrs(999))

Hint: The above statement should produce an error message because there is no employee
with employee ID 999.

EXECUTE DBMS_OUTPUT.PUT_LINE ('Approximately ' ||
get_service_yrs(106) || ' years')

Hint: The above statement should be successful and return the number of years of service
for employee with employee ID 106.

c. Query the JOB_HISTORY and EMPLOYEES tables for the specified employee to verify
that the modifications are accurate.

Oracle9i : Program with PL/SQL - Additional Practices - 16

Part A
20. In this practice, create a program to retrieve the number of different jobs that an employee worked

during his or her service.

a. Create a stored function called GET_JOB_COUNT to retrieve the total number of different
jobs on which an employee worked.

The function should accept one parameter to hold the employee ID. The function will return
the number of different jobs that employee worked until now. This also includes the present
job. Add exception handling to account for an invalid employee ID.

Hint: Verify distinct job IDs from the JOB_HISTORY table. Verify whether the current
job ID is one of the job IDs on which the employee worked.

b. Invoke the function. You can use the following data:

EXECUTE DBMS_OUTPUT.PUT_LINE('Employee worked on ' ||
get_job_count(176) || ' different jobs.')

Note: These exercises can be used for extra practice when discussing how to create packages.

21. Create a package specification and body called EMP_JOB_PKG that contains your ADD_JOBS,
ADD_JOB_HIST, and UPD_SAL procedures, as well as your GET_SERVICE_YRS function.

a. Make all the constructs public. Consider whether you still need the stand-alone procedures
and functions that you just packaged.

b. Disable all the triggers before invoking the procedure and enable them after invoking the
procedure, as suggested in question 16b.

Invoke your ADD_JOBS procedure to create a new job with ID PR_MAN, job title Public
Relations Manager, and salary of 6,250.

Invoke your ADD_JOB_HIST procedure to modify the job of employee with employee ID
110 to job ID PR_MAN.

Hint: All of the above calls to the functions should be successful.

c. Query the JOBS, JOB_HISTORY, and EMPLOYEES tables to verify the results.

Oracle9i : Program with PL/SQL - Additional Practices - 17

Part A

Note: These exercises can be used for extra practice when discussing how to use Oracle-supplied
packages.

22. In this practice, use an Oracle-supplied package to schedule your GET_JOB_COUNT
function to run semiannually.

a. Create an anonymous block to call the DBMS_JOB Oracle-supplied package.

Invoke the package function DBMS_JOB.SUBMIT and pass the following four parameters: a
variable to hold the job number, the name of the subprogram you want to submit, SYSDATE as
the date when the job will run, and an interval of ADDMONTHS(SYSDATE , 6) for
semiannual submission.

Note: To force the job to run immediately, call DBMS_JOB.RUN(your_job_number) after
calling DBMS_JOB.SUBMIT. This executes the job waiting in the queue.

Execute the anonymous block.

b. Check your results by querying the EMPLOYEES and JOB_HISTORY tables and querying the
USER_JOBS dictionary view to see the status of your job submission.

Your output should appear similar to the following output:

Note: These exercises can be used for extra practice when discussing how to create database
triggers.

23. In this practice, create a trigger to ensure that the job ID of any new employee being hired to
department 80 (the Sales department) is a sales manager or representative.

a. Disable all the previously created triggers as discussed in question 16b.

b. Create a trigger called CHK_SALES_JOB.

Fire the trigger before every row that is changed after insertions and updates to the JOB_ID
column in the EMPLOYEES table. Check that the new employee has a job ID of SA_MAN or
SA_REP in the EMPLOYEES table. Add exception handling and provide an appropriate message
so that the update fails if the new job ID is not that of a sales manager or representative.

c. Test the trigger. You can use the following data:

UPDATE employees
SET job_id = 'AD_VP'
WHERE employee_id = 106;

UPDATE employees
SET job_id = 'AD_VP'
WHERE employee_id = 179;

UPDATE employees
SET job_id = 'SA_MAN'
WHERE employee_id = 179;

Hint: The middle statement should produce the error message specified in your trigger.

Oracle9i : Program with PL/SQL - Additional Practices - 18

Part A
d. Query the EMPLOYEES table to view the changes. Commit the changes.

e. Enable all the triggers that you previously disabled, as discussed in question 16b.

24. In this practice, create a trigger to ensure that the minimum and maximum salaries of a job are
never modified such that the salary of an existing employee with that job ID is out of
the new range specified for the job.

a. Create a trigger called CHECK_SAL_RANGE.

Fire the trigger before every row that is changed when data is updated in the MIN_SALARY and
MAX_SALARY columns in the JOBS table. For any minimum or maximum salary value that is
changed, check that the salary of any existing employee with that job ID in the EMPLOYEES
table falls within the new range of salaries specified for this job ID. Include exception handling
to cover a salary range change that affects the record of any existing employee.

b. Test the trigger. You can use the following data:
SELECT * FROM jobs WHERE job_id = 'SY_ANAL';

SELECT employee_id, job_id, salary
FROM employees
WHERE job_id = 'SY_ANAL';

UPDATE jobs
SET min_salary = 5000, max_salary = 7000
WHERE job_id = 'SY_ANAL';

UPDATE jobs
SET min_salary = 7000, max_salary = 18000
WHERE job_id = 'SY_ANAL';

Oracle9i : Program with PL/SQL - Additional Practices - 19

Part B: Entity Relationship Diagram

TITLE
#* ID

* title
* description

o rating
o category
o release date

TITLE_COPY
#* ID

* status

RENTAL
#* book date
o act ret date
o exp ret date

MEMBER
#* ID

* last name
o first name
o address
o city
o phone
* join date

RESERVATION
#* reservation date

for

the subject
of

available as

a copy

the subject of

made against

responsible
for

created
for

responsible
for

set up for

Oracle9i : Program with PL/SQL - Additional Practices - 20

Part B
In this exercise, create a package named VIDEO that contains procedures and functions for a video
store application. This application allows customers to become a member of the video store. Any
members can rent movies, return rented movies, and reserve movies. Additionally, create a trigger to
ensure that any data in the video tables is modified only during business hours.

Create the package using iSQL*Plus and use the DBMS_OUTPUT Oracle supplied package to display
messages.

The video store database contains the following tables: TITLE, TITLE_COPY, RENTAL,
RESERVATION, and MEMBER. The entity relationship diagram is shown on the previous page.

Oracle9i : Program with PL/SQL - Additional Practices - 21

Part B
1. Run the script buildvid1.sql to create all of the required tables and sequences needed for

this exercise.

Run the script buildvid2.sql to populate all the tables created through by the script
buildvid1.sql

2. Create a package named VIDEO with the following procedures and functions:

a. NEW_MEMBER: A public procedure that adds a new member to the MEMBER table. For
the member ID number, use the sequence MEMBER_ID_SEQ; for the join date, use
SYSDATE. Pass all other values to be inserted into a new row as parameters.

b. NEW_RENTAL: An overloaded public function to record a new rental. Pass the title ID
number for the video that a customer wants to rent and either the customer’s last name or
his member ID number into the function. The function should return the due date for the
video. Due dates are three days from the date the video is rented. If the status for a
movie requested is listed as AVAILABLE in the TITLE_COPY table for one copy of
this title, then update this TITLE_COPY table and set the status to RENTED. If there is
no copy available, the function must return NULL. Then, insert a new record into the
RENTAL table identifying the booked date as today's date, the copy ID number, the
member ID number, the title ID number and the expected return date. Be aware of
multiple customers with the same last name. In this case, have the function return NULL,
and display a list of the customers' names that match and their ID numbers.

c. RETURN_MOVIE: A public procedure that updates the status of a video (available,
rented, or damaged) and sets the return date. Pass the title ID, the copy ID and the status
to this procedure. Check whether there are reservations for that title, and display a
message if it is reserved. Update the RENTAL table and set the actual return date to
today’s date. Update the status in the TITLE_COPY table based on the status parameter
passed into the procedure.

d. RESERVE_MOVIE: A private procedure that executes only if all of the video copies
requested in the NEW_RENTAL procedure have a status of RENTED. Pass the member
ID number and the title ID number to this procedure. Insert a new record into the
RESERVATION table and record the reservation date, member ID number, and title ID
number. Print out a message indicating that a movie is reserved and its expected date of
return.

e. EXCEPTION_HANDLER: A private procedure that is called from the exception handler
of the public programs. Pass to this procedure the SQLCODE number, and the name of
the program (as a text string) where the error occurred. Use
RAISE_APPLICATION_ERROR to raise a customized error. Start with a unique key
violation (-1) and foreign key violation
(-2292). Allow the exception handler to raise a generic error for any other errors.

Oracle9i : Program with PL/SQL - Additional Practices - 22

Part B

You can use the following data to test your routines:

SET ECHO ON

SET SERVEROUTPUT ON

EXECUTE video.new_member

('Haas', 'James', 'Chestnut Street', 'Boston', '617-123-4567')

EXECUTE video.new_member
('Biri', 'Allan', 'Hiawatha Drive', 'New York', '516-123-4567')

EXECUTE DBMS_OUTPUT.PUT_LINE(video.new_rental(110, 98))

EXECUTE DBMS_OUTPUT.PUT_LINE(video.new_rental(109, 93))

EXECUTE DBMS_OUTPUT.PUT_LINE(video.new_rental(107, 98))

EXECUTE DBMS_OUTPUT.PUT_LINE(video.new_rental('Biri', 97))

EXECUTE DBMS_OUTPUT.PUT_LINE(video.new_rental(97, 97))

SET ECHO OFF

Oracle9i : Program with PL/SQL - Additional Practices - 23

Part B

EXECUTE video.return_movie(98, 1, 'AVAILABLE')

EXECUTE video.return_movie(95, 3, 'AVAILABLE')

EXECUTE video.return_movie(111, 1, 'RENTED')

Oracle9i : Program with PL/SQL - Additional Practices - 24

Part B

3. The business hours for the video store are 8:00 a.m. to 10:00 p.m., Sunday through Friday, and
8:00 a.m. to 12:00 a.m. on Saturday. To ensure that the tables can only be modified
during these hours, create a stored procedure that is called by triggers on the tables.

a. Create a stored procedure called TIME_CHECK that checks the current time against business
hours. If the current time is not within business hours, use the RAISE_APPLICATION_ERROR
procedure to give an appropriate message.

b. Create a trigger on each of the five tables. Fire the trigger before data is inserted, updated, and
deleted from the tables. Call your TIME_CHECK procedure from each of these triggers.

c. Test your trigger.

Note: In order for your trigger to fail, you need to change the time to be outside the range of
your current time in class. For example, while testing, you may want valid video hours in your
trigger to be from 6:00 p.m. to 8:00 a.m.

Additional
Practice

Solutions

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 3

Part A: Additional Practice 1 and 2 Solutions

1. Evaluate each of the following declarations. Determine which of them are not legal and explain why.

a. DECLARE

v_name,v_dept VARCHAR2(14);

This is illegal because only one identifier per declaration is allowed.

b. DECLARE

v_test NUMBER(5);

This is legal.

c. DECLARE

V_MAXSALARY NUMBER(7,2) = 5000;

This is illegal because the assignment operator is wrong. It should be :=.

d. DECLARE

V_JOINDATE BOOLEAN := SYSDATE;

This is illegal because there is a mismatch in the data types. A Boolean data type cannot be
assigned a date value. The data type should be date.

2. In each of the following assignments, determine the data type of the resulting expression.

a. v_email := v_firstname || to_char(v_empno);

Character string

b. v_confirm := to_date('20-JAN-1999', 'DD-MON-YYYY');

Date

c. v_sal := (1000*12) + 500

Number

d. v_test := FALSE;

Boolean

e. v_temp := v_temp1 < (v_temp2/ 3);

Boolean

f. v_var := sysdate;

Date

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 4

Part A: Additional Practice 3 Solutions

3. DECLARE

v_custid NUMBER(4) := 1600;

v_custname VARCHAR2(300) := 'Women Sports Club';

v_new_custid NUMBER(3) := 500;

BEGIN

DECLARE

v_custid NUMBER(4) := 0;

v_custname VARCHAR2(300) := 'Shape up Sports Club';

v_new_custid NUMBER(3) := 300;

v_new_custname VARCHAR2(300) := 'Jansports Club';

BEGIN

v_custid := v_new_custid;

v_custname := v_custname || ' ' || v_new_custname;

END;

v_custid := (v_custid *12) / 10;

END;

/

Evaluate the PL/SQL block above above and determine the data type and value of each of the
following variables, according to the rules of scoping:

a. The value of V_CUSTID at position 1 is:

300, and the data type is NUMBER

b. The value of V_CUSTNAME at position 1 is:

Shape up Sports Club Jansports Club, and the data type is VARCHAR2

c. The value of V_NEW_CUSTID at position 1 is:

500, and the data type is NUMBER (or INTEGER)

d. The value of V_NEW_CUSTNAME at position 1 is:

Jansports Club, and the data type is VARCHAR2

e. The value of V_CUSTID at position 2 is:

1920, and the data type is NUMBER

f. The value of V_CUSTNAME at position 2 is:

Women Sports Club, and the data type is VARCHAR2

1

2

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 5

Part A: Additional Practice 4 Solutions

4. Write a PL/SQL block to accept a year and check whether it is a leap year. For example, if the year
entered is 1990, the output should be “1990 is not a leap year”.

Hint: The year should be exactly divisible by 4 but not divisible by 100, or it should be
divisible by 400.

Test your solution with the following years:

SET SERVEROUTPUT ON

UNDEFINE

DECLARE

V_YEAR NUMBER(4) := &P_YEAR;

V_REMAINDER1 NUMBER(5,2);

V_REMAINDER2 NUMBER(5,2);

V_REMAINDER3 NUMBER(5,2);

BEGIN

V_REMAINDER1 := MOD(V_YEAR,4);

V_REMAINDER2 := MOD(V_YEAR,100);

V_REMAINDER3 := MOD(V_YEAR,400);

IF ((V_REMAINDER1 = 0 AND V_REMAINDER2 <> 0)
OR V_REMAINDER3 = 0) THEN

DBMS_OUTPUT.PUT_LINE(V_YEAR || ' is a leap year');

ELSE

DBMS_OUTPUT.PUT_LINE (V_YEAR || ' is not a leap year');

END IF;

END;

/

SET SERVEROUTPUT OFF

1990 Not a leap year
2000 Leap year

1996 Leap year

1886 Not a leap year
1992 Leap year

1824 Leap year

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 6

Part A: Additional Practice 5 Solutions

5. a. For the exercises below, you will require a temporary table to store the results. You can either create the
table yourself or run the labAp_05.sql script that will create the table for you. Create a table named
TEMP with the following three columns:

CREATE TABLE temp

(num_store NUMBER(7,2),

char_store VARCHAR2(35),

date_store DATE);

b. Write a PL/SQL block that contains two variables, MESSAGE and DATE_WRITTEN. Declare
MESSAGE as VARCHAR2 data type with a length of 35 and DATE_WRITTEN as DATE data type.
Assign the following values to the variables:

Variable Contents

MESSAGE 'This is my first PL/SQL program'
DATE_WRITTEN Current date

Store the values in appropriate columns of the TEMP table. Verify your results by querying
the TEMP table.
DECLARE

MESSAGE VARCHAR2(35);

DATE_WRITTEN DATE;

BEGIN

MESSAGE := 'This is my first PLSQL Program';

DATE_WRITTEN := SYSDATE;

INSERT INTO temp(CHAR_STORE,DATE_STORE)

VALUES (MESSAGE,DATE_WRITTEN);
END;

/

SELECT * FROM TEMP;

Column Name NUM_STORE CHAR_STORE DATE_STORE

Key Type

Nulls/Unique

FK Table

FK Column

Datatype Number VARCHAR2 Date

Length 7,2 35

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 7

Part A: Additional Practice 6 and 7 Solutions

6. a. Store a department number in a iSQL*Plus substitution variable
SET SERVEROUTPUT ON

DEFINE P_DEPTNO = 30

b. Write a PL/SQL block to print the number of people working in that department.

Hint: Enable DBMS_OUTPUT in iSQL*Plus with SET SERVEROUTPUT ON.

DECLARE

V_COUNT NUMBER(3);

V_DEPTNO DEPARTMENTS.department_id%TYPE := &P_DEPTNO;

BEGIN

SELECT COUNT(*) INTO V_COUNT FROM employees

WHERE department_id = V_DEPTNO;

DBMS_OUTPUT.PUT_LINE (V_COUNT || ' employee(s) work for department
number ' ||V_DEPTNO);

END;

/

7. Write a PL/SQL block to declare a variable called v_salary to store the salary of an employee. In the
executable part of the program, do the following:

a. Store an employee name in a iSQL*Plus substitution variable

SET SERVEROUTPUT ON

DEFINE P_LASTNAME = Pataballa

b. Store his or her salary in the v_salary variable

c. If the salary is less than 3,000, give the employee a raise of 500 and display the message '<Employee
Name>’s salary updated' in the window.

d. If the salary is more than 3,000, print the employee’s salary in the format, '<Employee Name> earns
…...………'

e. Test the PL/SQL for the last names

Note: Undefine the variable that stores the employee’s name at the end of the script.

DECLARE

V_SALARY NUMBER(7,2);

V_LASTNAME EMPLOYEES.LAST_NAME%TYPE;

BEGIN

SELECT salary INTO V_SALARY

FROM employees

WHERE last_name = INITCAP('&&P_LASTNAME') FOR UPDATE of salary;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 8

Part A: Additional Practice 7 and 8 Solutions

V_LASTNAME := INITCAP('&P_LASTNAME');

IF V_SALARY < 3000 THEN

UPDATE employees SET salary = salary + 500

WHERE last_name = INITCAP('&P_LASTNAME') ;

DBMS_OUTPUT.PUT_LINE (V_LASTNAME || '''s salary updated');

ELSE

DBMS_OUTPUT.PUT_LINE (V_LASTNAME || ' earns ' ||

TO_CHAR(V_SALARY));

END IF;

END;

/

SET SERVEROUTPUT OFF

UNDEFINE P_LASTNAME

8. a. Store the salary of an employee in a iSQL*Plus substitution variable.

SET SERVEROUTPUT ON

DEFINE P_SALARY = 5000

b. Write a PL/SQL block to use the above defined salary and perform the following:

• Calculate the annual salary as salary * 12.

• Calculate the bonus as indicated below:

• Display the amount of the bonus in the window in the following format:

‘The bonus is $………………..’

DECLARE

V_SALARY NUMBER(7,2) := &P_SALARY;

V_BONUS NUMBER(7,2);

V_ANN_SALARY NUMBER(15,2);

Annual Salary Bonus

>= 20,000 2,000

19,999 - 10,000 1,000

<= 9,999 500

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 9

Part A: Additional Practice 8 and 9 Solutions
BEGIN

V_ANN_SALARY := V_SALARY * 12;

IF V_ANN_SALARY >= 20000 THEN

V_BONUS := 2000;

ELSIF V_ANN_SALARY <= 19999 AND V_ANN_SALARY >=10000 THEN

V_BONUS := 1000;

ELSE

V_BONUS := 500;

END IF;

DBMS_OUTPUT.PUT_LINE ('The Bonus is $ ' || TO_CHAR(V_BONUS));

END;

/

SET SERVEROUTPUT OFF

9. a. Write a PL/SQL block to store an employee number, the new department number and the percentage
increase in the salary in iSQL*Plus substitution variables.

SET SERVEROUTPUT ON

DEFINE P_EMPNO = 100

DEFINE P_NEW_DEPTNO = 10

DEFINE P_PER_INCREASE = 2

b. Update the department ID of the employee with the new department number, and update the salary with
the new salary. Use the EMP table for the updates. Once the update is complete, display the message,
‘Update complete’ in the window. If no matching records are found, display the message, ‘No Data
Found’. Test the PL/SQL.

DECLARE

V_EMPNO emp.EMPLOYEE_ID%TYPE := &P_EMPNO;

V_NEW_DEPTNO emp.DEPARTMENT_ID%TYPE := & P_NEW_DEPTNO;

V_PER_INCREASE NUMBER(7,2) := & P_PER_INCREASE;

BEGIN

UPDATE emp

SET department_id = V_NEW_DEPTNO,

salary = salary + (salary * V_PER_INCREASE/100)

WHERE employee_id = V_EMPNO;

IF SQL%ROWCOUNT = 0 THEN

DBMS_OUTPUT.PUT_LINE ('No Data Found');

ELSE

DBMS_OUTPUT.PUT_LINE ('Update Complete');

END IF;

END;

/

SET SERVEROUTPUT OFF

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 10

Part A: Additional Practice 10 Solutions

10. Create a PL/SQL block to declare a cursor EMP_CUR to select the employee name, salary, and hire
date from the EMPLOYEES table. Process each row from the cursor, and if the salary is greater than
15,000 and the hire date is greater than 01-FEB-1988, display the employee name, salary, and hire
date in the window.

SET SERVEROUTPUT ON

DECLARE

CURSOR EMP_CUR IS

SELECT last_name,salary,hire_date FROM EMPLOYEES;

V_ENAME VARCHAR2(25);

V_SAL NUMBER(7,2);

V_HIREDATE DATE;

BEGIN

OPEN EMP_CUR;

FETCH EMP_CUR INTO V_ENAME,V_SAL,V_HIREDATE;

WHILE EMP_CUR%FOUND

LOOP

IF V_SAL > 15000 AND V_HIREDATE >= TO_DATE('01-FEB-1988','DD-MON-
YYYY') THEN

DBMS_OUTPUT.PUT_LINE (V_ENAME || ' earns ' || TO_CHAR(V_SAL)|| ' and
joined the organization on ' || TO_DATE(V_HIREDATE,'DD-Mon-YYYY'));

END IF;

FETCH EMP_CUR INTO V_ENAME,V_SAL,V_HIREDATE;

END LOOP;

CLOSE EMP_CUR;

END;

/

SET SERVEROUTPUT OFF

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 11

Part A: Additional Practice 11 Solutions

11. Create a PL/SQL block to retrieve the last name and department ID of each employee from the
EMPLOYEES table for those employees whose EMPLOYEE_ID is less than 114. From the values
retrieved from the EMPLOYEES table, populate two PL/SQL tables, one to store the records of the
employee last names and the other to store the records of their department IDs. Using a loop, retrieve
the employee name information and the salary information from the PL/SQL tables and display it in
the window, using DBMS_OUTPUT.PUT_LINE. Display these details for the first 15 employees in
the PL/SQL tables.

SET SERVEROUTPUT ON

DECLARE

TYPE Table_Ename is table of employees.last_name%TYPE

INDEX BY BINARY_INTEGER;

TYPE Table_dept is table of employees.department_id%TYPE

INDEX BY BINARY_INTEGER;

V_Tename Table_Ename;

V_Tdept Table_dept;

i BINARY_INTEGER :=0;

CURSOR C_Namedept IS SELECT last_name,department_id from employees

WHERE employee_id < 115;

V_COUNT NUMBER := 15;

BEGIN

FOR emprec in C_Namedept

LOOP

i := i +1;

V_Tename(i) := emprec.last_name;

V_Tdept(i) := emprec.department_id;

END LOOP;

FOR i IN 1..v_count

LOOP

DBMS_OUTPUT.PUT_LINE ('Employee Name: ' || V_Tename(i) ||

' Department_id: ' || V_Tdept(i));

END LOOP;

END;

/

SET SERVEROUTPUT OFF

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 12

Part A: Additional Practice 12 Solutions

12. a. Create a PL/SQL block that declares a cursor called DATE_CUR. Pass a parameter of DATE data
type to the cursor and print the details of all employees who have joined after that date.

SET SERVEROUTPUT ON

DEFINE P_HIREDATE = 08-MAR-00

b. Test the PL/SQL block for the following hire dates: 08-MAR-00, 25-JUN-97, 28-SEP-98,
07-FEB-99.

DECLARE

CURSOR DATE_CURSOR(JOIN_DATE DATE) IS

SELECT employee_id,last_name,hire_date FROM employees

WHERE HIRE_DATE >JOIN_DATE ;

V_EMPNO employees.employee_id%TYPE;

V_ENAME employees.last_name%TYPE;

V_HIREDATE employees.hire_date%TYPE;

V_DATE employees.hire_date%TYPE := '&P_HIREDATE';

BEGIN

OPEN DATE_CURSOR(V_DATE);

LOOP

FETCH DATE_CURSOR INTO V_EMPNO,V_ENAME,V_HIREDATE;

EXIT WHEN DATE_CURSOR%NOTFOUND;

DBMS_OUTPUT.PUT_LINE (V_EMPNO || ' ' || V_ENAME || ' ' ||

V_HIREDATE);

END LOOP;

END;

/

SET SERVEROUTPUT OFF;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 13

Part A: Additional Practice 13 Solutions

13. Create a PL/SQL block to promote clerks who earn more than 3,000 to SR. CLERK and increase their
salary by 10%. Use the EMP table for this practice. Verify the results by querying on the EMP table.

Hint: Use a cursor with FOR UPDATE and CURRENT OF syntax.

DECLARE

CURSOR C_Senior_Clerk IS

SELECT employee_id,job_id FROM emp

WHERE job_id = 'ST_CLERK' AND salary > 3000

FOR UPDATE OF job_id;

BEGIN

FOR V_Emrec IN C_Senior_Clerk

LOOP

UPDATE emp

SET job_id = 'ST_CLERK',

salary = 1.1 * salary

WHERE CURRENT OF C_Senior_Clerk;

END LOOP;

COMMIT;

END;

/

SELECT * FROM emp;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 14

Part A: Additional Practice 14 Solutions
14. a. For the exercise below, you will require a table to store the results. You can create the ANALYSIS

table yourself or run the labAp_14a.sql script that creates the table for you. Create a table
called ANALYSIS with the following three columns:

CREATE TABLE analysis

(ename Varchar2(20),

years Number(2),

sal Number(8,2));

b. Create a PL/SQL block to populate the ANALYSIS table with the information from the EMPLOYEES table.
Use an iSQL*Plus substitution variable to store an employee’s last name.

SET SERVEROUTPUT ON

DEFINE P_ENAME = Austin

c. Query the EMPLOYEES table to find if the number of years that the employee has been with the organization
is greater than five, and if the salary is less than 3,500, raise an exception. Handle the exception with an
appropriate exception handler that inserts the following values into the ANALYSIS table: employee last
name, number of years of service, and the current salary. Otherwise display Not due for a raise in
the window. Verify the results by querying the ANALYSIS table. Test the PL/SQL block.

DECLARE

DUE_FOR_RAISE EXCEPTION;

V_HIREDATE EMPLOYEES.HIRE_DATE%TYPE;

V_ENAME EMPLOYEES.LAST_NAME%TYPE := INITCAP('& P_ENAME');

V_SAL EMPLOYEES.SALARY%TYPE;

V_YEARS NUMBER(2);

Column Name ENAME YEARS SAL

Key Type

Nulls/Unique

FK Table

FK Column

Datatype VARCHAR2 Number Number

Length 20 2 8,2

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 15

Part A: Additional Practice 14 Solutions (continued)

BEGIN

SELECT LAST_NAME,SALARY,HIRE_DATE

INTO V_ENAME,V_SAL,V_HIREDATE

FROM employees WHERE last_name = V_ENAME;

V_YEARS := MONTHS_BETWEEN(SYSDATE,V_HIREDATE)/12;

IF V_SAL < 3500 AND V_YEARS > 5 THEN

RAISE DUE_FOR_RAISE;

ELSE

DBMS_OUTPUT.PUT_LINE ('Not due for a raise');

END IF;

EXCEPTION

WHEN DUE_FOR_RAISE THEN

INSERT INTO ANALYSIS(ENAME,YEARS,SAL)

VALUES (V_ENAME,V_YEARS,V_SAL);

END;

/

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 16

Part A: Additional Practice 15 Solutions
15. In this practice, create a program to add a new job into the JOBS table.

a. Create a stored procedure called ADD_JOBS to enter a new order into the JOBS table.

The procedure should accept three parameters. The first and second parameters supplies a job ID and
a job title. The third parameter supplies the minimum salary. Use the maximum salary for the new
job as twice the minimum salary supplied for the job ID.
CREATE OR REPLACE PROCEDURE add_jobs

(p_jobid IN jobs.job_id%TYPE,
p_jobtitle IN jobs.job_title%TYPE,

p_minsal IN jobs.min_salary%TYPE

)

IS

v_maxsal jobs.max_salary%TYPE;

BEGIN

v_maxsal := 2 * p_minsal;

INSERT INTO jobs

(job_id, job_title, min_salary, max_salary)

VALUES

(p_jobid, p_jobtitle, p_minsal, v_maxsal);

DBMS_OUTPUT.PUT_LINE ('Added the following row
into the JOBS table ...');

DBMS_OUTPUT.PUT_LINE (p_jobid || ' ' || p_jobtitle ||
' '|| p_minsal || ' ' || v_maxsal);

END add_jobs;

/

b. Disable the trigger SECURE_EMPLOYEES before invoking the procedure. Invoke the procedure to
add a new job with job ID SY_ANAL, job title System Analyst, and minimum salary of 6,000.

SET SERVEROUTPUT ON

ALTER TRIGGER secure_employees DISABLE;

EXECUTE add_jobs ('SY_ANAL', 'System Analyst', 6000)

c. Verify that a row was added and remember the new job ID for use in the next exercise.

Commit the changes.
SELECT *

FROM jobs

WHERE job_id = 'SY_ANAL';

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 17

Part A: Additional Practice 16 Solutions
16. In this practice, create a program to add a new row to the JOB_HISTORY table, for an existing

employee.

Note: Disable all triggers on the EMPLOYEES, JOBS, and JOB_HISTORY tables before
invoking the procedure in part b. Enable all these triggers after executing the procedure.

a. Create a stored procedure called ADD_JOB_HIST to enter a new row into the JOB_HISTORY
table for an employee who is changing his job to the new job ID that you created in question 15b.

Use the employee ID of the employee who is changing the job and the new job ID for the employee
as parameters. Obtain the row corresponding to this employee ID from the EMPLOYEES table and
insert it into the JOB_HISTORY table. Make hire date of this employee as start date and today's
date as end date for this row in the JOB_HISTORY table.

Change the hire date of this employee in the EMPLOYEES table to today's date. Update the job ID of
this employee to the job ID passed as parameter (Use the job ID of the job created in question 15b)
and salary equal to minimum salary for that job ID + 500.

Include exception handling to handle an attempt to insert a nonexistent employee.
CREATE OR REPLACE PROCEDURE add_job_hist

(p_empid IN employees.employee_id%TYPE,

p_jobid IN jobs.job_id%TYPE)

IS

BEGIN

INSERT INTO job_history

SELECT employee_id, hire_date, SYSDATE, job_id, department_id

FROM employees

WHERE employee_id = p_empid;

UPDATE employees

SET hire_date = SYSDATE,

job_id = p_jobid,

salary = (SELECT min_salary+500

FROM jobs

WHERE job_id = p_jobid)

WHERE employee_id = p_empid;
DBMS_OUTPUT.PUT_LINE ('Added employee ' ||p_empid||

' details to the JOB_HISTORY table');

DBMS_OUTPUT.PUT_LINE ('Updated current job of employee '
||p_empid|| ' to '|| p_jobid);

EXCEPTION

WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR (-20001, 'Employee does not exist!');

END add_job_hist;

/

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 18

Part A: Additional Practice 16 Solutions (continued)

b. Disable triggers. (See the note at the beginning of this question.)

Execute the procedure with employee ID 106 and job ID SY_ANAL as parameters.

Enable the triggers that you disabled.

ALTER TABLE employees DISABLE ALL TRIGGERS;

ALTER TABLE jobs DISABLE ALL TRIGGERS;

ALTER TABLE job_history DISABLE ALL TRIGGERS;

EXECUTE add_job_hist(106, 'SY_ANAL')

ALTER TABLE employees ENABLE ALL TRIGGERS;

ALTER TABLE jobs ENABLE ALL TRIGGERS;

ALTER TABLE job_history ENABLE ALL TRIGGERS;

c. Query the tables to view your changes, and then commit the changes.

SELECT * FROM job_history
WHERE employee_id = 106;

SELECT job_id, salary FROM employees
WHERE employee_id = 106;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 19

Part A: Additional Practice 17 Solutions
17. In this practice, create a program to update the minimum and maximum salaries for a job in the

JOBS table.

a. Create a stored procedure called UPD_SAL to update the minimum and maximum salaries for a
specific job ID in the JOBS table.

Pass three parameters to the procedure: the job ID, a new minimum salary, and a new maximum
salary for the job. Add exception handling to account for an invalid job ID in the JOBS table. Also,
raise an exception if the maximum salary supplied is less than the minimum salary. Provide an
appropriate message that will be displayed if the row in the JOBS table is locked and cannot be
changed.
CREATE OR REPLACE PROCEDURE upd_sal

(p_jobid IN jobs.job_id%type,

p_minsal IN jobs.min_salary%type,

p_maxsal IN jobs.max_salary%type)

IS

v_dummy VARCHAR2(1);

e_resource_busy EXCEPTION;

sal_error EXCEPTION;

PRAGMA EXCEPTION_INIT (e_resource_busy , -54);

BEGIN

IF (p_maxsal < p_minsal) THEN
DBMS_OUTPUT.PUT_LINE('ERROR. MAX SAL SHOULD BE > MIN SAL');

RAISE sal_error;

END IF;

SELECT ''

INTO v_dummy

FROM jobs

WHERE job_id = p_jobid

FOR UPDATE OF min_salary NOWAIT;

UPDATE jobs
SET min_salary = p_minsal,

max_salary = p_maxsal

WHERE job_id = p_jobid;

EXCEPTION

WHEN e_resource_busy THEN

RAISE_APPLICATION_ERROR (-20001, 'Job information is

currently locked, try later.');

WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR

(-20001, 'This job ID does not exist');

WHEN sal_error THEN
RAISE_APPLICATION_ERROR(-20001,'Data error..Max salary should

be more than min salary');

END upd_sal;

/

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 20

Part A: Additional Practice 17 and 18 Solutions
b. Execute the procedure. You can use the following data to test your procedure:

Note: Disable triggers SALARY_CHECK and AUDIT_EMP_VALUES, if you get an error while
executing the second EXECUTE statement.
EXECUTE upd_sal('SY_ANAL', 7000, 140) (This statement should raise an exception.)

EXECUTE upd_sal('SY_ANAL', 7000,14000) (This statement should be successful.)

c. Query the JOBS table to view your changes, and then commit the changes.
SELECT *

FROM jobs

WHERE job_id = 'SY_ANAL';

18. In this practice, create a procedure to monitor whether employees have exceeded their average salary
limits.

a. Add a column to the EMPLOYEES table by executing the following command: (labaddA_18.sql)
ALTER TABLE employees
ADD (sal_limit_indicate VARCHAR2(3) DEFAULT 'NO'

CONSTRAINT emp_sallimit_ck CHECK

(sal_limit_indicate IN ('YES', 'NO')));

b. Write a stored procedure called CHECK_AVG_SAL which checks each employee's average salary
limit from the JOBS table against the salary that this employee has in the EMPLOYEES table and
updates the SAL_LIMIT_INDICATE column in the EMPLOYEES table when this employee has
exceeded his or her average salary limit.

Create a cursor to hold employee IDs, salaries, and their average salary limit. Find the average salary
limit possible for an employee's job from the JOBS table. Compare the average salary limit possible
per employee to their salary and if the salary is more than the average salary limit, set the employee's
SAL_LIMIT_INDICATE column to YES; otherwise, set it to NO. Add exception handling to
account for a record being locked.

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 21

Part A: Additional Practice 18 Solutions (continued)
CREATE OR REPLACE PROCEDURE check_avg_sal
IS

v_avg_sal NUMBER;

CURSOR emp_sal_cur IS

SELECT employee_id, job_id, salary

FROM employees

FOR UPDATE;

e_resource_busy EXCEPTION;

PRAGMA EXCEPTION_INIT(e_resource_busy, -54);

BEGIN

FOR r_emp IN emp_sal_cur LOOP

SELECT (max_salary + min_salary)/2

INTO v_avg_sal

FROM jobs

WHERE jobs.job_id = r_emp.job_id;

IF r_emp.salary >= v_avg_sal THEN

UPDATE employees
SET sal_limit_indicate = 'YES'

WHERE CURRENT OF emp_sal_cur;

ELSE

UPDATE employees

SET sal_limit_indicate = 'NO'

WHERE employee_id = r_emp.employee_id;

END IF;

END LOOP;

EXCEPTION

WHEN e_resource_busy THEN

ROLLBACK;

RAISE_APPLICATION_ERROR (-20001,
'Record is busy, try later.');

END check_avg_sal;

/

c. Execute the procedure, and then test the results.

EXECUTE check_avg_sal

Query the EMPLOYEES table to view your modifications, and then commit the changes.

SELECT e.job_id, j.min_salary, e.salary, j.max_salary
FROM employees e, jobs j
WHERE e.job_id = j.job_id
AND employee_id = 106;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 22

Part A: Additional Practice 19 Solutions
19. Create a program to retrieve the number of years of service for a specific employee.

a. Create a stored function called GET_SERVICE_YRS to retrieve the total number of years of service
for a specific employee.

The function should accept the employee ID as a parameter and return the number of years of
service. Add error handling to account for an invalid employee ID.
CREATE OR REPLACE FUNCTION get_service_yrs

(p_empid IN employees.employee_id%TYPE)

RETURN number

IS

CURSOR emp_yrs_cur IS

SELECT (end_date - start_date)/365 service

FROM job_history

WHERE employee_id = p_empid;

v_srvcyrs NUMBER(2) := 0;

v_yrs NUMBER(2) := 0;

BEGIN

FOR r_yrs IN emp_yrs_cur LOOP

EXIT WHEN emp_yrs_cur%NOTFOUND;

v_srvcyrs := v_srvcyrs + r_yrs.service;

END LOOP;
SELECT (SYSDATE - hire_date)

INTO v_yrs

FROM employees

WHERE employee_id = p_empid;

v_srvcyrs := v_srvcyrs + v_yrs;

RETURN v_srvcyrs;

EXCEPTION

WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR(-20348, 'There is no employee with
the specified ID');

END get_service_yrs;

/

b. Invoke the function. You can use the following data:
EXECUTE DBMS_OUTPUT.PUT_LINE(get_service_yrs(999))

EXECUTE DBMS_OUTPUT.PUT_LINE ('Approximately ' ||
get_service_yrs(106) || ' years')

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 23

Part A: Additional Practice 19 Solutions (continued)

c. Query the JOB_HISTORY and EMPLOYEES tables for the specified employee to verify that the
modifications are accurate.
SELECT employee_id, job_id, (end_date-start_date)/365 duration
FROM job_history;

SELECT job_id, (SYSDATE-hire_date)/365 duration
FROM employees
WHERE employee_id = 106;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 24

Part A: Additional Practice 20 Solutions

20. In this practice, create a program to retrieve the number of different jobs that an employee
worked during his or her service.

a. Create a stored function called GET_JOB_COUNT to retrieve the total number of different jobs on
which employee worked.

The function should accept one parameter to hold the employee ID. The function will return the
number of different jobs that employee worked until now. This also includes the present job. Add
exception handling to account for an invalid employee ID.

Hint: Verify distinct job IDs from the Job_history table. Verify whether the current job ID is
one of the job IDs on which the employee worked.

CREATE OR REPLACE FUNCTION get_job_count

(p_empid IN employees.employee_id%TYPE)

RETURN NUMBER

IS

v_currjob employees.job_id%TYPE;

v_numjobs NUMBER := 0;

n NUMBER;

BEGIN

SELECT COUNT(DISTINCT job_id)

INTO v_numjobs

FROM job_history

WHERE employee_id = p_empid;

SELECT COUNT(job_id)

INTO n

FROM employees

WHERE employee_id = p_empid

AND job_id IN (SELECT DISTINCT job_id

FROM job_history

WHERE employee_id = p_empid);

IF (n = 0) THEN -- The current job is not one of the previous
jobs

v_numjobs := v_numjobs + 1;

END IF;

RETURN v_numjobs;

EXCEPTION

WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR(-20348, 'This employee does not
exist!');

END get_job_count;

/

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 25

Part A: Additional Practice 20 and 21 Solutions
b. Invoke the function. You can use the following data:

EXECUTE DBMS_OUTPUT.PUT_LINE('Employee worked on ' ||
get_job_count(176) || ' different jobs.')

21. Create a package specification and body called EMP_JOB_PKG that contains your ADD_JOBS,
ADD_JOB_HIST, and UPD_SAL procedures, as well as your GET_SERVICE_YRS function.

a. Make all the constructs public. Consider whether you still need the stand-alone procedures and
functions you just packaged.

CREATE OR REPLACE PACKAGE emp_job_pkg
IS

PROCEDURE add_jobs
(p_jobid IN jobs.job_id%TYPE,
p_jobtitle IN jobs.job_title%TYPE,
p_minsal IN jobs.min_salary%TYPE

);
PROCEDURE add_job_hist
(p_empid IN employees.employee_id%TYPE,
p_jobid IN jobs.job_id%TYPE);

PROCEDURE upd_sal
(p_jobid IN jobs.job_id%type,
p_minsal IN jobs.min_salary%type,
p_maxsal IN jobs.max_salary%type);

FUNCTION get_service_yrs
(p_empid IN employees.employee_id%TYPE)
RETURN NUMBER;

END emp_job_pkg;
/
CREATE OR REPLACE PACKAGE BODY emp_job_pkg
IS

PROCEDURE add_jobs
(p_jobid IN jobs.job_id%TYPE,
p_jobtitle IN jobs.job_title%TYPE,
p_minsal IN jobs.min_salary%TYPE
)
IS

v_maxsal jobs.max_salary%TYPE;
BEGIN

v_maxsal := 2 * p_minsal;
INSERT INTO jobs (job_id, job_title, min_salary, max_salary)
VALUES (p_jobid, p_jobtitle, p_minsal, v_maxsal);
DBMS_OUTPUT.PUT_LINE ('Added the following row into the JOBS

table ...');
DBMS_OUTPUT.PUT_LINE (p_jobid||' '||p_jobtitle||'

'||p_minsal||' '||v_maxsal);
END add_jobs;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 26

Part A: Additional Practice 21 Solutions (continued)
PROCEDURE add_job_hist
(p_empid IN employees.employee_id%TYPE,
p_jobid IN jobs.job_id%TYPE) IS

BEGIN
INSERT INTO job_history
SELECT employee_id, hire_date, SYSDATE, job_id, department_id
FROM employees WHERE employee_id = p_empid;

UPDATE employees
SET hire_date = SYSDATE, job_id = p_jobid,

salary = (SELECT min_salary+500 FROM jobs
WHERE job_id = p_jobid)

WHERE employee_id = p_empid;
DBMS_OUTPUT.PUT_LINE ('Added employee ' ||p_empid|| ' details

to the JOB_HISTORY table');
DBMS_OUTPUT.PUT_LINE('Updated current job of employee ' ||

p_empid || ' to ' || p_jobid);
EXCEPTION
WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20001, 'Employee does not exist!');

END add_job_hist;
PROCEDURE upd_sal

(p_jobid IN jobs.job_id%type,
p_minsal IN jobs.min_salary%type,
p_maxsal IN jobs.max_salary%type) IS
v_dummy VARCHAR2(1);
e_resource_busy EXCEPTION;
sal_error EXCEPTION;
PRAGMA EXCEPTION_INIT (e_resource_busy , -54);

BEGIN
IF (p_maxsal < p_minsal) THEN
DBMS_OUTPUT.PUT_LINE('ERROR..MAX SAL SHOULD BE > MIN SAL');
RAISE sal_error;

END IF;
SELECT '' INTO v_dummy FROM jobs WHERE job_id = p_jobid

FOR UPDATE OF min_salary NOWAIT;
UPDATE jobs
SET min_salary = p_minsal, max_salary = p_maxsal
WHERE job_id = p_jobid;

EXCEPTION
WHEN e_resource_busy THEN
RAISE_APPLICATION_ERROR (-20001, 'Job information is currently

locked, try later.');
WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20001, 'This job ID doesn't exist');
WHEN sal_error THEN
RAISE_APPLICATION_ERROR(-20001,'Data error..Max salary

should be more than min salary');
END upd_sal;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 27

Part A: Additional Practice 21 Solutions (continued)
FUNCTION get_service_yrs
(p_empid IN employees.employee_id%TYPE)
RETURN number

IS
CURSOR emp_yrs_cur IS
SELECT (end_date - start_date)/365 service
FROM job_history
WHERE employee_id = p_empid;

v_srvcyrs NUMBER(2) := 0;
v_yrs NUMBER(2) := 0;

BEGIN
FOR r_yrs IN emp_yrs_cur LOOP
EXIT WHEN emp_yrs_cur%NOTFOUND;
v_srvcyrs := v_srvcyrs + r_yrs.service;

END LOOP;
SELECT (SYSDATE - hire_date)
INTO v_yrs
FROM employees
WHERE employee_id = p_empid;

v_srvcyrs := v_srvcyrs + v_yrs;
RETURN v_srvcyrs;

EXCEPTION
WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR(-20348, 'There is no employee with the

specified ID');
END get_service_yrs;

END emp_job_pkg;
/

b. Disable all the triggers before invoking the procedure and enable them after invoking the procedure,
as suggested in question 16b.

Invoke your ADD_JOBS procedure to create a new job with ID PR_MAN, job title Public
Relations Manager, and salary of 6,250.

Invoke your ADD_JOB_HIST procedure to modify the job of employee with employee ID 110 to
job ID PR_MAN.

Hint: All of the above calls to the functions should be successful.
EXECUTE emp_job_pkg.add_jobs ('PR_MAN', 'Public Relations

Manager', 6250)
EXECUTE emp_job_pkg.add_job_hist(110, 'PR_MAN')

c. Query the JOBS, JOB_HISTORY, and EMPLOYEES tables to verify the results.

SELECT * FROM jobs WHERE job_id = 'PR_MAN';

SELECT * FROM job_history WHERE employee_id = 110;

SELECT job_id, salary FROM employees WHERE employee_id = 110;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 28

Part A: Additional Practice 22 Solutions
22. In this practice, use an Oracle-supplied package to schedule your GET_JOB_COUNT

function to run semiannually.

a. Create an anonymous block to call the DBMS_JOB Oracle-supplied package.

Invoke the package function DBMS_JOB.SUBMIT and pass the following four parameters: a
variable to hold the job number, the name of the subprogram you want to submit, SYSDATE as the
date when the job will run, and an interval of ADDMONTHS(SYSDATE , 6) for semiannual
submission.

DECLARE

v_job USER_JOBS.job%TYPE;

BEGIN

DBMS_JOB.SUBMIT (v_job, 'BEGIN DBMS_OUTPUT.PUT_LINE
(get_job_count(110)); END; ',

SYSDATE,

'ADD_MONTHS(SYSDATE, 6)');

DBMS_JOB.RUN(v_job);

DBMS_OUTPUT.PUT_LINE('JOB: '|| v_job ||

' COMPLETED AT - ' || SYSDATE);

END;

/

Note: To force the job to run immediately, call DBMS_JOB.RUN(your_job_number) after calling
DBMS_JOB.SUBMIT. This executes the job waiting in the queue.

Execute the anonymous block.

b. Check your results by querying the EMPLOYEES and JOB_HISTORY tables and querying the
USER_JOBS dictionary view to see the status of your job submission.

SELECT job, what, schema_user, last_date, next_date, interval

FROM USER_JOBS;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 29

Part A: Additional Practice 23 Solutions

23. In this practice, create a trigger to ensure that the job ID of any new employee being hired to
department 80 (the Sales department) is a sales manager or representative.

a. Disable all the previously created triggers as discussed in question 16b.

ALTER TABLE employees DISABLE ALL TRIGGERS;

ALTER TABLE jobs DISABLE ALL TRIGGERS;

ALTER TABLE job_history DISABLE ALL TRIGGERS;

b. Create a trigger called CHK_SALES_JOB.

Fire the trigger before every row that is changed after insertions and updates to the JOB_ID column
in the EMPLOYEES table. Check that the new employee has a job ID of SA_MAN or SA_REP in the
EMPLOYEES table. Add exception handling and provide an appropriate message so that the update
fails if the new job ID is not that of a sales manager or representative.

CREATE OR REPLACE TRIGGER chk_sales_job

BEFORE INSERT OR UPDATE OF job_id ON employees

FOR EACH ROW

DECLARE

e_invalid_sales_job EXCEPTION;

BEGIN

IF :new.department_id = 80 THEN

IF (:new.job_id NOT IN ('SA_MAN' , 'SA_REP')) THEN

RAISE e_invalid_sales_job;

END IF;

END IF;

EXCEPTION

WHEN e_invalid_sales_job THEN

RAISE_APPLICATION_ERROR (-20444, 'This employee in department
80 should be a Sales Manager or Sales Rep!');

END chk_sales_job;

/

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 30

Part A: Additional Practice 23 Solutions (continued)

c. Test the trigger. You can use the following data:
UPDATE employees
SET job_id = 'AD_VP'
WHERE employee_id = 106;

UPDATE employees
SET job_id = 'AD_VP'
WHERE employee_id = 179;

UPDATE employees
SET job_id = 'SA_MAN'
WHERE employee_id = 179;

Hint: The middle statement should produce the error message specified in your trigger.

d. Query the EMPLOYEES table to view the changes. Commit the changes.

SELECT job_id, department_id, salary

FROM employees

WHERE employee_id = 179;

e. Enable all the triggers previously that you disabled, as discussed in question 16b.

ALTER TABLE employees ENABLE ALL TRIGGERS;

ALTER TABLE jobs ENABLE ALL TRIGGERS;

ALTER TABLE job_history ENABLE ALL TRIGGERS;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 31

Part A: Additional Practice 24 Solutions
24. In this practice, create a trigger to ensure that the minimum and maximum salaries of a job are

never modified such that the salary of an existing employee with that job ID is out of the new
range specified for the job.

a. Create a trigger called CHECK_SAL_RANGE.

Fire the trigger before every row that is changed when data is updated in the MIN_SALARY and
MAX_SALARY columns in the JOBS table. For any minimum or maximum salary value that is
changed, check that the salary of any existing employee with that job ID in the EMPLOYEES table
falls within the new range of salaries specified for this job ID. Include exception handling to cover a
salary range change that affects the record of any existing employee.
CREATE OR REPLACE TRIGGER check_sal_range
BEFORE UPDATE OF min_salary, max_salary ON jobs
FOR EACH ROW
DECLARE

v_minsal employees.salary%TYPE;
v_maxsal employees.salary%TYPE;

e_invalid_salrange EXCEPTION;
BEGIN

SELECT MIN(salary), MAX(salary)
INTO v_minsal, v_maxsal
FROM employees

WHERE job_id = :NEW.job_id;
IF (v_minsal < :NEW.min_salary)OR(v_maxsal > :NEW.max_salary)

THEN RAISE e_invalid_salrange;
END IF;

EXCEPTION

WHEN e_invalid_salrange THEN
RAISE_APPLICATION_ERROR(-20550, 'There are employees whose

salary is out of the specified range. Can not update with
the specified salary range.');

END check_sal_range;
/

b. Test the trigger. You can use the following data:
SELECT * FROM jobs WHERE job_id = 'SY_ANAL';
SELECT employee_id, job_id, salary
FROM employees
WHERE job_id = 'SY_ANAL';

UPDATE jobs
SET min_salary = 5000, max_salary = 7000
WHERE job_id = 'SY_ANAL';

UPDATE jobs
SET min_salary = 7000, max_salary = 18000
WHERE job_id = 'SY_ANAL';

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 32

Part B: Additional Practice 1 Solutions
1. Run the script buildvid1.sql to create all of the required tables and sequences needed for

this exercise.

Run the script buildvid2.sql to populate all the tables created through by the script
buildvid1.sql

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 33

Part B: Additional Practice 2 Solutions
2. Create a package named VIDEO with the following procedures and functions:

a. NEW_MEMBER: A public procedure that adds a new member to the MEMBER table. For the member
ID number, use the sequence MEMBER_ID_SEQ; for the join date, use SYSDATE. Pass all other
values to be inserted into a new row as parameters.

b. NEW_RENTAL: An overloaded public function to record a new rental. Pass the title ID number for
the video that a customer wants to rent and either the customer’s last name or his member ID number
into the function. The function should return the due date for the video. Due dates are three days
from the date the video is rented. If the status for a movie requested is listed as AVAILABLE in the
TITLE_COPY table for one copy of this title, then update this TITLE_COPY table and set the status
to RENTED. If there is no copy available, the function must return NULL. Then, insert a new record
into the RENTAL table identifying the booked date as today's date, the copy ID number, the member
ID number, the title ID number and the expected return date. Be aware of multiple customers with
the same last name. In this case, have the function return NULL, and display a list of the customers'
names that match and their ID numbers.

c. RETURN_MOVIE: A public procedure that updates the status of a video (available, rented, or
damaged) and sets the return date. Pass the title ID, the copy ID and the status to this procedure.
Check whether there are reservations for that title, and display a message if it is reserved. Update the
RENTAL table and set the actual return date to today’s date. Update the status in the TITLE_COPY
table based on the status parameter passed into the procedure.

d. RESERVE_MOVIE: A private procedure that executes only if all of the video copies requested in the
NEW_RENTAL procedure have a status of RENTED. Pass the member ID number and the title ID
number to this procedure. Insert a new record into the RESERVATION table and record the
reservation date, member ID number, and title ID number. Print out a message indicating that a
movie is reserved and its expected date of return.

e. EXCEPTION_HANDLER: A private procedure that is called from the exception handler of the public
programs. Pass the SQLCODE number to this procedure, and the name of the program (as a text
string) where the error occurred. Use RAISE_APPLICATION_ERROR to raise a customized error.
Start with a unique key violation (-1) and foreign key violation
(-2292). Allow the exception handler to raise a generic error for any other errors.

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 34

CREATE OR REPLACE PACKAGE video
IS

PROCEDURE new_member
(p_lname IN member.last_name%TYPE,
p_fname IN member.first_name%TYPE DEFAULT NULL,
p_address IN member.address%TYPE DEFAULT NULL,
p_city IN member.city%TYPE DEFAULT NULL,
p_phone IN member.phone%TYPE DEFAULT NULL);

FUNCTION new_rental
(p_member_id IN rental.member_id%TYPE,
p_title_id IN rental.title_id%TYPE)

RETURN DATE;

FUNCTION new_rental
(p_member_name IN member.last_name%TYPE,
p_title_id IN rental.title_id%TYPE)

RETURN DATE;

PROCEDURE return_movie
(p_title_id IN rental.title_id%TYPE,
p_copy_id IN rental.copy_id%TYPE,
p_status IN title_copy.status%TYPE);

END video;
/

Part B: Additional Practice 2 Solutions

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 35

Part B: Additional Practice 2 Solutions (continued)

CREATE OR REPLACE PACKAGE BODY video
IS

/* PRIVATE PROGRAMS */
PROCEDURE exception_handler
(p_code IN NUMBER,
p_context IN VARCHAR2)

IS
BEGIN
IF p_code = -1 THEN
RAISE_APPLICATION_ERROR(-20001, 'The number is
assigned to this member is already in use, try again.');

ELSIF p_code = -2291 THEN
RAISE_APPLICATION_ERROR(-20002, p_context || ' has
attempted to use a foreign key value that is invalid');

ELSE
RAISE_APPLICATION_ERROR(-20999, 'Unhandled error in ' ||
p_context || '. Please contact your application
administrator with the following information: '
|| CHR(13) || SQLERRM);

END IF;
END exception_handler;

PROCEDURE reserve_movie
(p_member_id IN reservation.member_id%TYPE,
p_title_id IN reservation.title_id%TYPE)

IS
CURSOR rented_cur IS
SELECT exp_ret_date
FROM rental
WHERE title_id = p_title_id
AND act_ret_date IS NULL;

BEGIN
INSERT INTO reservation (res_date, member_id, title_id)
VALUES(SYSDATE, p_member_id, p_title_id);

COMMIT;
FOR rented_rec IN rented_cur LOOP
DBMS_OUTPUT.PUT_LINE('Movie reserved. Expected back on: '
|| rented_rec.exp_ret_date);

EXIT WHEN rented_cur%found;
END LOOP;

EXCEPTION
WHEN OTHERS THEN
exception_handler(SQLCODE, 'RESERVE_MOVIE');

END reserve_movie;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 36

/* PUBLIC PROGRAMS */

PROCEDURE return_movie
(p_title_id IN rental.title_id%TYPE,
p_copy_id IN rental.copy_id%TYPE,
p_status IN title_copy.status%TYPE)

IS
v_dummy VARCHAR2(1);
CURSOR res_cur IS
SELECT *
FROM reservation
WHERE title_id = p_title_id;

BEGIN
SELECT ''
INTO v_dummy
FROM title
WHERE title_id = p_title_id;

UPDATE rental
SET act_ret_date = SYSDATE
WHERE title_id = p_title_id
AND copy_id = p_copy_id
AND act_ret_date IS NULL;

UPDATE title_copy
SET status = UPPER(p_status)
WHERE title_id = p_title_id
AND copy_id = p_copy_id;

FOR res_rec IN res_cur LOOP
IF res_cur%FOUND THEN
DBMS_OUTPUT.PUT_LINE('Put this movie on hold -- '||

'reserved by member #' || res_rec.member_id);
END if;

END LOOP;
EXCEPTION
WHEN OTHERS THEN
exception_handler(SQLCODE, 'RETURN_MOVIE');

END return_movie;

Part B: Additional Practice 2 Solutions (continued)

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 37

Part B: Additional Practice 2 Solutions (continued)

/* PUBLIC PROGRAMS */

FUNCTION new_rental
(p_member_id IN rental.member_id%TYPE,
p_title_id IN rental.title_id%TYPE)

RETURN DATE
IS
CURSOR copy_cur IS
SELECT *
FROM title_copy
WHERE title_id = p_title_id
FOR UPDATE;

v_flag BOOLEAN := FALSE;
BEGIN
FOR copy_rec IN copy_cur LOOP
IF copy_rec.status = 'AVAILABLE' THEN
UPDATE title_copy

SET status = 'RENTED'
WHERE CURRENT OF copy_cur;

INSERT INTO rental(book_date, copy_id, member_id,
title_id, exp_ret_date)

VALUES(SYSDATE, copy_rec.copy_id, p_member_id,
p_title_id, SYSDATE + 3);

v_flag := TRUE;
EXIT;

END IF;
END LOOP;
COMMIT;
IF v_flag THEN
RETURN (SYSDATE + 3);

ELSE
reserve_movie(p_member_id, p_title_id);
RETURN NULL;

END IF;
EXCEPTION
WHEN OTHERS THEN
exception_handler(SQLCODE, 'NEW_RENTAL');

END new_rental;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 38

Part B: Additional Practice 2 Solutions (continued)

/* PUBLIC PROGRAMS */
FUNCTION new_rental

(p_member_name IN member.last_name%TYPE,
p_title_id IN rental.title_id%TYPE)

RETURN DATE
IS
CURSOR copy_cur IS
SELECT *
FROM title_copy
WHERE title_id = p_title_id
FOR UPDATE;

v_flag BOOLEAN := FALSE;
p_member_id member.member_id%TYPE;
CURSOR member_cur IS
SELECT member_id, last_name, first_name
FROM member
WHERE LOWER(last_name) = LOWER(p_member_name)
ORDER BY last_name, first_name;

BEGIN
SELECT member_id
INTO p_member_id
FROM member
WHERE lower(last_name) = lower(p_member_name);

FOR copy_rec IN copy_cur LOOP
IF copy_rec.status = 'AVAILABLE' THEN
UPDATE title_copy

SET status = 'RENTED'
WHERE CURRENT OF copy_cur;

INSERT INTO rental (book_date, copy_id, member_id,
title_id, exp_ret_date)

VALUES (SYSDATE, copy_rec.copy_id, p_member_id,
p_title_id, SYSDATE + 3);

v_flag := TRUE;
EXIT;

END IF;
END LOOP;
COMMIT;
IF v_flag THEN
RETURN(SYSDATE + 3);

ELSE
reserve_movie(p_member_id, p_title_id);
RETURN NULL;

END IF;

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 39

Part B: Additional Practice 2 Solutions (continued)

/* NEW RENTAL CONTINUED FROM PRIOR PAGE */
EXCEPTION
WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE(
'Warning! More than one member by this name.');

FOR member_rec IN member_cur LOOP
DBMS_OUTPUT.PUT_LINE(member_rec.member_id || CHR(9) ||

member_rec.last_name || ', ' || member_rec.first_name);
END LOOP;
RETURN NULL;

WHEN OTHERS THEN
exception_handler(SQLCODE, 'NEW_RENTAL');

END new_rental;

PROCEDURE new_member
(p_lname IN member.last_name%TYPE,
p_fname IN member.first_name%TYPE DEFAULT NULL,
p_address IN member.address%TYPE DEFAULT NULL,
p_city IN member.city%TYPE DEFAULT NULL,
p_phone IN member.phone%TYPE DEFAULT NULL)

IS
BEGIN
INSERT INTO member(member_id, last_name, first_name,

address, city, phone, join_date)
VALUES(member_id_seq.NEXTVAL, p_lname, p_fname,

p_address, p_city, p_phone, SYSDATE);
COMMIT;

EXCEPTION
WHEN OTHERS THEN
exception_handler(SQLCODE, 'NEW_MEMBER');

END new_member;
END video;
/

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 40

Part B: Additional Practice 3 Solutions

3. The business hours for the video store are 8:00 a.m. to 10:00 p.m., Sunday through Friday, and
8:00 a.m. to 12:00 a.m. on Saturday. To ensure that the tables can only be modified
during these hours, create a stored procedure that is called by triggers on the tables.

a. Create a stored procedure called TIME_CHECK that checks the current time against business hours.
If the current time is not within business hours, use the RAISE_APPLICATION_ERROR procedure
to give an appropriate message.

b. Create a trigger on each of the five tables. Fire the trigger before data is inserted, updated, and
deleted from the tables. Call your TIME_CHECK procedure from each of these triggers.

c. Test your trigger.

Note: In order for your trigger to fail, you need to change the time to be outside the range of your
current time in class. For example, while testing, you may want valid video hours in your trigger to
be from 6:00 p.m. to 8:00 a.m.

CREATE OR REPLACE PROCEDURE time_check
IS
BEGIN

IF ((TO_CHAR(SYSDATE,'D') BETWEEN 1 AND 6)
AND
(TO_DATE(TO_CHAR(SYSDATE, 'hh24:mi'), 'hh24:mi')

NOT BETWEEN
TO_DATE('08:00', 'hh24:mi') AND TO_DATE('22:00', 'hh24:mi')))
OR
((TO_CHAR(SYSDATE, 'D') = 7)
AND
(TO_DATE(TO_CHAR(SYSDATE, 'hh24:mi'), 'hh24:mi')

NOT BETWEEN
TO_DATE('08:00', 'hh24:mi') AND TO_DATE('24:00', 'hh24:mi')))

THEN
RAISE_APPLICATION_ERROR(-20999,
'Data changes restricted to office hours.');

END IF;
END time_check;
/

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 41

Part B: Additional Practice 3 Solutions (continued)

CREATE OR REPLACE TRIGGER member_trig
BEFORE INSERT OR UPDATE OR DELETE ON member

BEGIN
time_check;

END;
/
CREATE OR REPLACE TRIGGER rental_trig

BEFORE INSERT OR UPDATE OR DELETE ON rental
BEGIN

time_check;
END;
/
CREATE OR REPLACE TRIGGER title_copy_trig

BEFORE INSERT OR UPDATE OR DELETE ON title_copy
BEGIN

time_check;
END;
/
CREATE OR REPLACE TRIGGER title_trig

BEFORE INSERT OR UPDATE OR DELETE ON title
BEGIN

time_check;
END;
/
CREATE OR REPLACE TRIGGER reservation_trig

BEFORE INSERT OR UPDATE OR DELETE ON reservation
BEGIN

time_check;
END;
/

Oracle9i: Program with PL/SQL - Additional Practice Solutions - 42

Additional Practices:
Table Descriptions

and Data

Oracle9i: Program with PL/SQL - Table Descriptions - 2

Part A

The tables and data used in part A are the same as those in the appendix B, “Table Descriptions and
Data.”

Oracle9i: Program with PL/SQL - Table Descriptions - 3

Part B: Tables Used

Oracle9i: Program with PL/SQL - Table Descriptions - 4

Part B: MEMBER Table

DESCRIBE member

SELECT * FROM member;

Oracle9i: Program with PL/SQL - Table Descriptions - 5

Part B: RENTAL Table

DESCRIBE rental

SELECT * FROM rental;

Oracle9i: Program with PL/SQL - Table Descriptions - 6

Part B: RESERVATION Table

DESCRIBE reservation

SELECT * FROM reservation;

Oracle9i: Program with PL/SQL - Table Descriptions - 7

Part B: TITLE Table

DESCRIBE title

SELECT * FROM title;

Oracle9i: Program with PL/SQL - Table Descriptions - 8

Part B: TITLE_COPY Table

DESCRIBE title_copy

SELECT * FROM title_copy;

